The Drosophila proneural gene amos promotes olfactory sensillum formation and suppresses bristle formation.
نویسندگان
چکیده
Proneural genes encode basic-helix-loop-helix (bHLH) transcription factors required for neural precursor specification. Recently amos was identified as a new candidate Drosophila proneural gene related to atonal. Having isolated the first specific amos loss-of-function mutations, we show definitively that amos is required to specify the precursors of two classes of olfactory sensilla. Unlike other known proneural mutations, a novel characteristic of amos loss of function is the appearance of ectopic sensory bristles in addition to loss of olfactory sensilla, owing to the inappropriate function of scute. This supports a model of inhibitory interactions between proneural genes, whereby ato-like genes (amos and ato) must suppress sensory bristle fate as well as promote alternative sense organ subtypes.
منابع مشابه
Drosophila tufted is a gain-of-function allele of the proneural gene amos.
Tufted is a classical Drosophila mutant characterized by a large number of ectopic mechanosensory bristles on the dorsal mesothorax. Unlike other ectopic bristle mutants, Tufted is epistatic to achaete and scute, the proneural genes that normally control the development of these sensory organs. In this report, I present genetic and molecular evidence that Tufted is a gain-of-function allele of ...
متن کاملThe Proneural Gene amos Promotes Multiple Dendritic Neuron Formation in the Drosophila Peripheral Nervous System
In the Drosophila peripheral nervous system, proneural genes direct the formation of different types of sensory organs. Here, we show that amos is a novel proneural gene that promotes multiple dendritic (MD) neuron formation. amos encodes a basic-helix-loop-helix (bHLH) protein of the Atonal family. During embryonic development, amos is expressed in patches of ectodermal cells, and the expressi...
متن کاملamos, a Proneural Gene for Drosophila Olfactory Sense Organs that Is Regulated by lozenge
In a variety of organisms, early neurogenesis requires the function of basic-helix-loop-helix (bHLH) transcription factors. For the Drosophila PNS, such transcription factors are encoded by the proneural genes (atonal and the achaete-scute complex, AS-C). We have identified a proneural gene, amos, that has strong similarity with atonal in its bHLH domain. We present evidence that amos is requir...
متن کاملTufted is a gain-of-function allele that promotes ectopic expression of the proneural gene amos in Drosophila.
The Tufted(1) (Tft(1)) dominant mutation promotes the generation of ectopic bristles (macrochaetae) in the dorsal mesothorax of Drosophila. Here we show that Tft(1) corresponds to a gain-of-function allele of the proneural gene amos that is associated with a chromosomal aberration at 36F-37A. This causes ectopic expression of amos in large domains of the lateral-dorsal embryonic ectoderm, which...
متن کاملA Re-examination of the Selection of the Sensory Organ Precursor of the Bristle Sensilla of Drosophila melanogaster
The bristle sensillum of the imago of Drosophila is made of four cells that arise from a sensory organ precursor cell (SOP). This SOP is selected within proneural clusters (PNC) through a mechanism that involves Notch signalling. PNCs are defined through the expression domains of the proneural genes, whose activities enables cells to become SOPs. They encode tissue specific bHLH proteins that f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 130 19 شماره
صفحات -
تاریخ انتشار 2003